

U.S. Army Research Laboratory Fiscal Year 2010 Status

Report for the Advanced, All-Source, Fusion
Technology Program Annex

by Gary Moss, Mark Thomas, and Mark Mittrick

ARL-TR-5489 March 2011

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5066

ARL-TR-5489 March 2011

U.S. Army Research Laboratory Fiscal Year 2010 Status
Report for the Advanced, All-Source, Fusion

Technology Program Annex

Gary Moss, Mark Thomas, and Mark Mittrick
Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

 ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

March 2011
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

1 October 2009–30 September 2010
4. TITLE AND SUBTITLE

U.S. Army Research Laboratory Fiscal Year 2010 Status Report for the Advanced,
All-Source, Fusion Technology Program Annex

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Gary Moss, Mark Thomas, and Mark Mittrick
5d. PROJECT NUMBER

1TEP11
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: RDRL-CII-C
Aberdeen Proving Ground, MD 21005-5067

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-5489

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The U.S. Army Research Laboratory (ARL), via its participation in the Advanced, All-Source, Fusion Technology Program
Annex (TPA) CE-CI-2010-02, is undertaking research in information fusion to assist the U.S. Army Intelligence Community.
This TPA establishes collaboration with the Communications-Electronics Research, Development, and Engineering Center
Intelligence and Information Warfare Directorate. Under this agreement, ARL is developing an integrated set of Web-enabled,
service-oriented applications collectively named the Relationship Discovery Service (RDS). The purpose of the RDS is to
provide a set of tools for the intelligence analyst or military decision maker to make sense of large amounts of soft intelligence
data. In particular, the RDS should provide the means to rapidly identify high-valued individuals and facilitate collection of
information on persons of interest over time.
15. SUBJECT TERMS

A2SF, data fusion, all-source, DCGS-A, HUMINT

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
OF ABSTRACT

UU

18. NUMBER
OF PAGES

30

19a. NAME OF RESPONSIBLE PERSON
Mark Mittrick

a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)
410-278-4148

 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

 iii

Contents

List of Figures iv

List of Tables v

1. Introduction 1

2. Relationship Discovery Service 2

2.1 Technical Evolution ..2

2.1.1 DCGS-A Application Framework to Fusion Exploitation Framework2

2.1.2 Automated Data Input ...3

2.1.3 Small to Large Datasets ...4

2.2 Cloud Computing ..9

2.2.1 Ozone Widget Framework ..9

2.3 Metadata Tagging of Unstructured Data ...11

2.3.1 Rationale ..11

2.3.2 Implementation Details ...13

2.3.3 Dual-Use Potential ..17

2.3.4 Scalability ..17

3. Conclusion 19

Distribution List 21

 iv

List of Figures

Figure 1. DCGS-A application framework version of the RDS. ..3

Figure 2. Example 100-message set text file. ...4

Figure 3. Example Ali Baba dataset message. ..5

Figure 4. Example HASTEN-1 dataset document. ...6

Figure 5. Example HASTEN-1 dataset document with imagery and text.7

Figure 6. RDS running under the Ozone Widget Framework. ...9

Figure 7. RDS preferences widget after loading an unusual font (left) and RDS SPARQL
query widget (right). ..10

Figure 8. RDS property editor. ...12

Figure 9. Search tab of RDS Twitter client...13

Figure 10. RDS database controller. ...14

Figure 11. Illustration of quad-tree storage of rectangles. ..15

Figure 12. Archived Twitter message. ..16

Figure 13. RDS investigator showing Twitter dataset. ...17

 v

List of Tables

Table 1. Various datasets. ...8

 vi

INTENTIONALLY LEFT BLANK.

 1

1. Introduction

The U.S. Army Research Laboratory (ARL), via its participation in the Advanced, All-Source,
Fusion (A2SF) Technology Program Annex (TPA) CE-CI-2010-02, is undertaking research in
information fusion to assist the U.S. Army Intelligence Community. This TPA establishes
collaboration with the Communications-Electronics Research, Development, and Engineering
Center (CERDEC) Intelligence and Information Warfare Directorate (I2WD). Under this
agreement, ARL is developing an integrated set of web-enabled, service-oriented applications
collectively named the Relationship Discovery Service (RDS). The purpose of the RDS is to
provide a set of tools for the intelligence analyst or military decision maker to make sense of
large amounts of soft intelligence (HUMINT) data. In particular, the RDS should provide the
means to rapidly identify high-valued individuals (HVI) and facilitate collection of information
on persons of interest over time.

The RDS was developed to address issues related to the counter-insurgency problems of current
asymmetric warfare. Force-on-force techniques are not sufficient against an adversary who is
mobile, tactically amorphous, and stealthy. To rapidly understand the current situation,
commanders require the ability to track HVIs within their areas of operations. This situational
understanding then increases their ability to anticipate their opposition and helps them formulate
plans that mitigate risk.

The RDS was designed to facilitate the identification of explicit links between individuals,
organizations, and events—in essence, the “relationship discovery” problem. Designed to be a
composable system, the RDS is a collection of web applications, each performing a vital role in
the operation of the whole. All data access from the constituent web applications is provided via
a web service interface.

Data are modeled using the World Wide Web Consortium,* Semantic Web,* knowledge
representation standard Web Ontology Language (OWL).* OWL is used to describe
“ontologies” that are basically class hierarchies defining entity types and their attributes (called
“properties”). OWL is based upon Resource Description Framework (RDF)* and has various
standard serializations, such as RDF/XML,* N-Triples,* Notation3,* and Turtle,* which can be
imported and exported by the RDS. The RDS uses the open-source Jena (http://jena.sourceforge
.net/) library for importing/exporting these formats, storing the data, and all forms of database
access.

*Note: For more information on any of these terms, please see <http://wikipedia.org>.

http://jena.sourceforge/

 2

The RDS has been developed over 3 years. Serving as a research and development platform
under the Soft Target Exploitation and Fusion (STEF) Advanced Technology Objective (ATO),
it was designed to utilize data extracted from HUMINT reports. These reports contain
information about humans that was collected by humans. They are characterized by a structured
format with unformatted content. As such, the research issues involved in reasoning over these
data include extraction, correlation, entity resolution, storage, ontology, and large dataset
processing. ARL research was focused on the storage, ontology, and graph matching techniques.
Also provided are social-network-style visualization with SNA metrics and a SPARQL* query
interface.

The A2SF research effort by CERDEC is an expansion of the STEF research. Integrating data
from “hard” sensors with the “soft” data of HUMINT, the research issues are more complex.
ARL has chosen to pursue a spiral develop/test/develop approach, adding new types of data
sources systematically, since there is no current methodology for combining these disparate data
formats.

The task deliverables for fiscal year (FY) 2010 were to extend the RDS for additional data
sources and to identify and acquire an all-source dataset. This report describes ARL efforts to
add new inputs to the RDS, the issues involved, solutions, and further work.

2. Relationship Discovery Service

2.1 Technical Evolution

2.1.1 DCGS-A Application Framework to Fusion Exploitation Framework

The RDS was originally developed under the STEF ATO in support of the Army Distributed
Common Ground Systems (DCGS-A). For the duration of the STEF program (FY07–09), the
DCGS-A, in phase 3 of development, required that all software utilize the DCGS-A Application
Framework (DAF) (a.k.a. “Viper”) for the development of user interface components. The DCGS-
A DAF is based upon the Microsoft Visual Studio .NET/C# integrated development environment.
User interface widgets created with the DAF are known as Viper Components, and they were
designed to be combined in a portal-like Viper application called the Multi-Function Workstation.
Communication between Viper Components was facilitated by the Collaboration Data Manager,
which is basically an object-oriented pub/sub-messaging bus that facilitated the sharing of
serializable data structures. An example of the RDS visual display is shown in figure 1.

*SPARQL is a recursive acronym that stands for SPARQL Protocol and RDF Query Language.

 3

Figure 1. DCGS-A application framework version of the RDS.

Beginning in FY10 with the inception of the A2SF program, the DCGS-A development
community is trending away from use of the DAF and C# to an open-source, Java-based
development environment called the Fusion Exploitation Framework (FEF), which is being
developed by defense contractor Potomac Fusion, Inc. (http://www.potomacfusion.com). The
management of data input sources, data fusion, or other types of data manipulation can be
implemented as composable FEF fusion modules. The recommended platform for deploying
user interface components is now the Ozone Widget Framework, which is typically known
simply as Ozone.

2.1.2 Automated Data Input

The role of the RDS throughout the STEF program was not to tackle the problem of extracting
information from raw, unstructured text messages. The text extraction problem was to be
worked under contract to CERDEC/I2WD by Orbis Technologies, Inc.

The RDS database was originally populated by data that were manually extracted. The
100-message set, developed under contract by Jeffrey D. Simon to CERDEC/I2WD, was used
extensively for software development and testing. The dataset was manually extracted using the
Protégé Ontology Editor using an ARL-developed ontology.1

1Apenyo, K. Relationship Discovery Service (RDS) User Manual; ARL-MR-0722; U.S. Army Research Laboratory:

Aberdeen Proving Ground, MD, 2009.

 4

However, the RDS needed a means to acquire data automatically. The RDS was capable of
providing automated assistance to relationship discovery, but the input process was labor
intensive. The long-range plan was that the product of the STEF program’s text extraction
engine would be machine-readable data triples (subject, predicate, and object) conforming to
RDF and OWL, typically referred to as RDF/OWL. Ultimately, the RDS was designed to be
able to operate upon RDF/OWL and to use it as its data transmission standard. The effort at the
outset of the A2SF program was to develop an automated data input mechanism for the RDS. As
automated extraction was being researched and developed by CERDEC, it was desirable to
explore other methods of data input without the requirement for “heavy” extraction. This report
describes ARL efforts to solve this problem using tagged data.

2.1.3 Small to Large Datasets

RDS was developed completely with the Jeffrey Simon 100-message set (see figure 2). This
provided a source of HUMINT data with ground truth for scientific investigations. The 100-
message set, however, is small (19,632 words—all text—unstructured) in comparison to
information systems, which process transactional data, for example. The experimental rigor of
the 100-message set was overshadowed by its small size. Therefore, ARL focused on acquiring
larger sets of data with ground truth, as well as some that had no ground truth but were desired
for sheer size. The scalability of the RDS needed to be tested, and this required larger numbers
of nodes and links.

Figure 2. Example 100-message set text file.

Report Number: IIR 0096

Report Type: IIR

Entered By Individual: SGT Juan Gonzalez

DOI: 2007-01-06 13:00:00

Date Entered: 2007-01-06 23:32:03

Subject: Al-Qaeda Reading Material

Source: U.S. Soldier's Interview with Bookstore Owner

Summary: Bookstore owner on Dhubat Street in Adhamiya said many customers are asking if he
has any books, magazines, or other material on al-Qaeda.

Text: A bookstore owner on Dhubat street in Adhamiya //MGRSCOORD: 38S MB 42493 94732 told
a soldier that many customers are requesting material about al-Qaeda. This included
inquiries about books, magazines, leaflets, etc. A few customers requested an al-Qaeda
manual that he did not have. One man came into the store around 1000Z wanting to know
where he could get DVDs or other video material about al-Qaeda. The bookstore owner told
him to search the Internet.

Remarks: Interpretation By SGT Barry Jones: The increased demand for information on al-
Qaeda by residents in Adhamiya is not surprising. This is related to the growing
popularity of the al-Qaeda in Iraq terrorist organization and the increased number of
attacks by Shiite militias on Sunnis in Adhamiya. The Sunnis are also feeling marginalized
in the predominately Shiite-government and by the presence of Shiite extremists among the
Iraqi police.

 5

The Ali Baba dataset was developed by the U.S. National Security Agency by Mark Jaworowski
and Steve Pavlak in 20032 (see figure 3). The dataset consists of two scenarios.

Figure 3. Example Ali Baba dataset message.

The first scenario is a collection of nearly 1000 unclassified, fictitious documents in Microsoft
Word format replicating intelligence reporting on the actions of suspected terrorist activity in
southern England. Among these documents are police reports, intelligence information reports
(local HUMINT and detainee reports from abroad), Foreign Broadcast Information System
(FBIS) reports, and local communications intercept (TACREP) messages. Approximately 75 of
these 1000 messages provide the heart of the database—that is, the planning and activities of the
main terrorist cell of the fictitious Ali Baba organization occurring over the course of several
months. Several hundred more messages relate to the communications and activities of
peripheral members of this terrorist cell to include friends and associates. Another several
hundred messages represent innocuous but potentially interesting chatter predominantly from
college campuses at Cambridge, Oxford, and others.

The second scenario is a collection of nearly 3000 unclassified, fictitious Word documents
replicating intelligence reporting on the actions of suspected terrorist and insurgent activities in
the mythical Middle-Eastern country of Pavlakistan. Among these documents are police reports,
intelligence information reports (local HUMINT and detainee reports from abroad), FBIS
reports, and TACREPs. Approximately 60 of these 3000 messages provide the heart of the
database—that is, the planning and activities of nine terrorist and insurgent cells operating in
Pavlakistan over the course of several months. Several hundred of the 3000 messages relate to
potentially significant activities of suspected members of various terrorist cells and insurgent
groups. The remaining ~2500 messages represent innocuous but potentially interesting chatter
from locations throughout Pavlakistan.2

Although the Ali Baba dataset is fairly large, diverse, and has ground truth, the data are not
marked up and contain errors (spelling, redundancy, etc.).

ARL has been focusing primarily on scenario 1. The steps taken to get the original Ali Baba
dataset into RDS are outlined as follows:

1. Loaded the Ali Baba (scenario 1) dataset into a MySQL database to be processed.

2. Extended the STEF ontology in order to accommodate all of the new Ali Baba data (i.e.,
Message Text, etc.)

2Jaworowski, M.; Pavlak, S. Ali Baba Dataset Ground Truth; U.S. National Security Agency: Fort Meade, MD, 2003.

Police Report 35
25 September 2003
London police are still searching for the man identified as Phil Salwah. According to one of their
police informants, Salwah was approached by what was likely a recruiter for a terrorist group.

 6

3. Developed code to read data from the MySQL database, as well as the individual messages,
and to convert them into the necessary RDF N-Triple (.nt) format. This required the
conversion of all the Ali Baba unstructured intelligence data reports from text (.txt) files
and scrap (.shs) files into Adobe PDFs (.pdf) and Microsoft Word Documents (.doc).

4. Tested/fixed/refined the Ali Baba RDF data (currently 27,000 lines of code and growing).
This included fixing various parse errors in the RDF due to instance names not being
proper qualified names (QName).* A QName cannot contain special characters, such as
single and double quotes and cannot begin with a digit. It also included the process of
adding and testing the inverse-relationship RDF code for the Ali Baba dataset (i.e., if a
message entity contains a reference to a person entity, that person should contain a property
that points back to the message).

5. Verified that the conclusions drawn by RDS match the Ali Baba (scenario 1) dataset
ground truth.

The U.S. Army Research Office, under the direction of Dr. John Lavery, commissioned the
development of a ground truth dataset based on Army exercises at the U.S. Army National
Training Center. Named Hard/Soft-Test Nucleus (HASTEN-1) (see figures 4 and 5), it is an all-
source dataset of ~10 terabytes of imagery, text, and unattended ground-sensor tracks. ARL
received this dataset in February 2010 and is evaluating the contents. Many of the data formats
are unfamiliar to ARL Tactical Information Fusion scientists, so ARL is in the process of
procuring the tools (Analyst Notebook, MATLAB, Google Earth, ENVI Freelook, i2
ChartReader, and Quantum GIS) required to fully utilize the dataset.

Figure 4. Example HASTEN-1 dataset document.

*QName, or qualified name, is a valid identifier in RDF. For more information, see <http://en.wikipedia.org/wiki/QName>.

 7

Marzuq Nuri Al Khuzaai
Last Updated: 2 June 2007

 Marzuq Nuri Al Khuzaai (Shia)
 AKA: Abu Essam Nuri Al Khuzaai
 Mayor of Medina Jabal and Qudha Jabal
  Friendly towards CF 
 Place of Birth:
 Phone Number:
 Date of Birth: 8 July 1957
 English Proficiency: Basic

 Most likely locations
 A Provincial Council Offices C Town Hall
 B Mayor’s Residence

Figure 5. Example HASTEN-1 dataset document with imagery and text.

 8

Pictured in table 1 are various dataset details presented in table format for comparing/contrasting
purposes. As shown in the table, each dataset has pros and cons. For example, the “100-
Message Set” has ground truth but has a very small sample size. The “HASTEN-1” dataset is
composed of various types of data that can be extremely useful, but due to the sheer volume of
the dataset and the different tools required to view everything, it is a daunting task to undertake.
Utilizing a combination of these datasets provides for the best results when testing RDS. The
ability to continue to acquire new diverse datasets in the future will be the key to enduring
success.

Table 1. Various datasets.

 100-Message Set Ali Baba Dataset HASTEN-1 Dataset Twitter Dataset

Location Iraq Southern England
Pavlakistan Iraq Variable

POC Jeffrey D. Simon
National Security Agency

Mark Jaworowski and
Steve Pavlak

Defense Advanced
Research Projects Agency

U.S. Army Research
Office (Dr. John Lavery)

Twitter.com

Date Ranges January 2007–May
2007 2003 2007 Variable

Ground Truth Yes, available Yes, available

Under evaluation, partially
available

(Threads exist, need to be
interpreted)

No, not available
(Dynamic, need

to be interpreted)

ISR Category HUMINT
HUMINT/

FBIS/
TACREPS

HUMINT/
OSINT/
SIGINT/
GEOINT/
MASINT

HUMINT/
GEOINT

Theme Intelligence/
military Intelligence/military Intelligence/military Variable

Sensor/Source NA NA Various sensors Open source

Format/Schema Plain text (.txt)
XML (.xml)

Word files (.doc)
PDF (.pdf)

Image files
(.bip)(.bil)(.bsq)(.hdr)(.snc)

(.ln1)(.pkt)
Plain text (.txt)

Database files (.sql)
Video files (.avi)

Plain text (.txt)
XML (.xml)

Classification Unclassified Unclassified Unclassified//
For Official Use Only Unclassified

Size/Count 100 messages/
400 kilobytes total

1000 messages scenario 1
3000 messages scenario 2

85 megabytes total
10 terabytes Scalable

License/
Ownership

U.S. Department of
Defense (DOD) use DOD use DOD use Public

Note: NA = not applicable.

 9

Automatic processing of data from unstructured sources is an active area of research. Typical
techniques involve natural language processing, which is promising but several years away from
a practical solution. ARL identified a practical and currently available solution using a data
source that has structured headers, with tagged input. The Twitter (http://twitter.com) message
type is one such format. The Twitter Application Programming Interface (API) (http://apiwiki
.twitter.com/Twitter-API-Documentation) provides public access to user messages (called status
updates) and associated metadata, such as the author, date and time the message was created, and
geographic information. The Twitter processing will be described in detail later, and results of
experimentation using the API will be presented.

2.2 Cloud Computing

2.2.1 Ozone Widget Framework

Ozone is a web-browser-based widget container or web portal that is implemented primarily in
JavaScript. Communication between widgets is provided by a JavaScript library, which
implements a pub/sub messaging bus where the payload can be either text strings or JSON
(http://www.json.org) objects. This year, the RDS was migrated to Ozone (see figure 6) from the
DAF. Immediately, there was a large benefit due to it being a pure web application—there is no
longer any software that needs to be installed on the user’s machine. The RDS now requires four
servers: Apache Tomcat (http://tomcat.apache.org), MySQL (http://mysql.com), NetKernel
(http://www.1060research.com/netkernal/roc), and Ozone.

Figure 6. RDS running under the Ozone Widget Framework.

http://apiwiki/
http://www.json.org/

 10

Most of the RDS is installed as a single web archive (WAR file) under Tomcat. Currently, RDS-
specific NetKernel modules are installed separately. Users must have accounts under MySQL
and Ozone, but there can be multiple instances of these servers available per instance of the
RDS. Ozone is deployed as a website, configured with user accounts and widgets. Widgets are
configured by their URLs so that each RDS widget could, in theory, be hosted on a different
Tomcat server instance. The MySQL host and account login are configured with user
preferences using the RDS Preferences widget (see figure 7), so data can be distributed to
different MySQL instances.*

Figure 7. RDS preferences widget after loading an unusual font (left) and RDS SPARQL query widget (right).

NetKernel and RDS-specific modules are specified with a URL, but this currently is not
configurable at runtime. Ultimately, all of these servers used to host the RDS software, and user
data can be distributed across available network resources, but gigabit speeds are recommended
for all but small datasets. For the most part, conversion of RDS components from DAF to Ozone
was straightforward because most of them were already implemented as Java applets. One of the
exceptions was the SPARQL query interface, which was originally written in C#. The actual
SPARQL query was performed by a Java web service built upon the Jena/ARQ library, so the
conversion to Ozone was just a matter of re-implementing the user interface as a Java applet.
The resultant RDS SPARQL Query widget is shown in figure 7.

*Other databases can be used, such as Microsoft SQL Server, PostgresSQL, Oracle, Apache Derby, or HSQLDB; however, so

far, only MySQL and Oracle have been configured.

 11

2.3 Metadata Tagging of Unstructured Data

2.3.1 Rationale

In FY10, one of the main challenges confronting the development of the RDS was the difficulty
in obtaining interesting, realistic, and unclassified datasets of considerable size. A fundamental
assumption of the RDS project is that its data source would be RDF triples (as mentioned
previously, the text extraction problem was being worked by Orbis); however, obtaining a large
set of triples with any meaningful content was problematic. It was determined that use of
classified data for developmental purposes was impractical. Furthermore, unclassified data that
were generated manually for developmental purposes were too limited in size and scope. Efforts
to develop analytical tools were hampered without the means to evaluate their effectiveness and
gain insight into how to extend the platform. Perhaps most importantly, there was no
opportunity to explore the performance bottlenecks of the system when operating on large
datasets.

Meanwhile, it was recognized that Twitter was rapidly gaining popularity compared to other
social networks and was interesting as a potential data source due to several key factors as
follows:

1. Twitter is a message-based communication service that is implemented by a collection of
public web services.

2. Twitter web services are centrally hosted and are accessible through several public APIs.

3. Twitter messages, or tweets, are assigned a unique ID and are transmitted with this and
other useful metadata. Each tweet is packaged into a serialized data structure in one of
several standard formats (e.g., extensible markup language [XML]* and JSON).

4. Tweets can only originate from users logged in to a Twitter account, so each message is
associated with a unique account; accounts are associated with a unique screen name and
numeric identifier.

5. Tweets frequently contain references to other screen names that are tagged (prefixed with a
‘@’ character), so they are easily extracted from the body of the message.

6. Tweets can be geo-referenced. If someone sends a tweet from a mobile device that is
equipped with a GPS, they can optionally include geo-coordinates (latitude and longitude)
in the metadata of the message.

It was decided to implement a Twitter client application to tap this resource as a virtually infinite
source of unclassified, public-domain information. The largest benefit of this strategy was that a
fully automated means of generating RDF triples and mapping them to an existing ontology (i.e.,

*For more information, see <http://en.wikipedia.org/wiki/XML>.

http://en.wikipedia.org/wiki/XML

 12

the STEF ontology) was not only attainable but affordable. In the process of creating the
mapping between Twitter metadata fields and the STEF ontology, this ontology was extended by
adding a new Message subclass called open source intelligence (OSINT). Twitter users were
mapped directly to the person entity (which is a subclass of ‘Agent’) since tweeters could be of
practically any person type—manual promotion of a person instance to a subclass such as
Terrorist can be done with the RDS property editor (see figure 8). The STEF ontology was
further extended to include new properties; for instance, the Twitter user who sent a message was
associated with the message via a new hasAuthor property.

Figure 8. RDS property editor.

Of particular interest was the Twitter Search API because it has the capability to collect
messages that are not only filtered by the terms of the query but could be restricted to messages
emanating from specified geographic coordinates and radius. Therefore, the plan was formulated
to store tweets as message entities uniquely identified by ID and tagged with the date and time
that they were posted, message authors, and embedded references to other users as person
entities uniquely identified by their screen names (or numeric ID). Also, any geo-located tweets
could be associated with a location entity. This last part presented an interesting entity
resolution problem that is described in the following paragraphs as part of the RDS Twitter
Client implementation details.

 13

2.3.2 Implementation Details

Development of the RDS Twitter Client (see figure 9) spiraled into one of the richest and most
complex components of the RDS. It is composed of dynamic XHTML, i.e., an XML-compliant
dialect of HTML. With the exception of a small static web page skeleton, this XHTML
document is generated at runtime via JavaScript. There is a Java Applet embedded in the web
page, but it is hidden. The Java Applet serves as a proxy for all of the Twitter web service
communications. Implementing Twitter API web service calls in JavaScript is difficult due to
security measures taken by browsers to protect against cross-domain scripting vulnerabilities.
The Java Applet also provides for translation of tweets to RDF for storage in the database and for
archiving tweets. All Twitter API calls used by the RDS return JSON format. As stated
previously, Twitter API calls return data in at least two flavors, XML and JSON. Although
XML is more widely supported, JSON is more useful for applications that use JavaScript, since
it is the native object format for this scripting language.

Figure 9. Search tab of RDS Twitter client.

The user interface provides a collection of tabbed panels; the search tab is selected in figure 9.
There are tabs to retrieve the home or user timeline, links to friends or followers, and the
timelines of any Twitter lists a user has created. So, for instance, if the user wishes to monitor
certain Twitter users, or tweeters, the user can either create a Twitter account and follow the
tweeters of interest so that they will appear on the home timeline, or the user can create named
lists of them. When requesting API calls requiring user authentication, the RDS Twitter Client
uses OAuth (http://oauth.net).* OAuth is required for Twitter authentication as of August 2010.
It is a secure way for the user to authorize an application to access his or her Twitter account
without revealing the password to the application. A user need only authenticate the RDS
Twitter Client one time on a given computer. The user’s OAuth credentials can safely be stored
and are valid indefinitely unless the user revokes them. They are only valid for the particular
application that was authorized.

*OAuth has been described as “an API access delegation protocol”; for more information, see <http://hueniverse.com/2007/09

/explaining-oauth/>.

 14

Each tab overlay is capable of asynchronous operation so the user does not have to wait for a
query or update to complete before using other tabs or RDS applications. The search and
timeline tabs also have a stream option that provides for automatic polling for new search results
or status updates so that tweets can be accumulated over time to create larger datasets or provide
coverage of a topic for a specific duration of interest. The polling operation self-throttles the
frequency of requests depending on how many results are returned so it does not burden the
Twitter servers more than necessary while ensuring that no messages are skipped. Twitter has
terms of use that, if violated, will automatically blacklist applications that do not comply (i.e.,
frequency of requests must be at least 20 s apart). There are also limits on how many messages
can be retrieved per web service call; for instance, searches are limited to 100 messages while
timelines are 200, so if polling is too infrequent, messages will be missed. Note that the Twitter
Client does not use the Twitter Streaming API. This is planned to be implemented in FY11 as a
more efficient means of collecting filtered messages over time. This API was not released to the
public until late in FY10 and is not yet stable. However, unlike the other Twitter APIs, the
Streaming API is not available to any developer. Permission to connect is granted by Twitter
based on a written justification, and ARL has not yet submitted an application.

To save a set of tweets to a data model, the user first selects an existing model or creates a new
model using the RDS Database Controller (see figure 10), making sure that it has been loaded
with the version of the STEF ontology containing Twitter extensions, as just described.

Figure 10. RDS database controller.

The user then hits the Save button on the Twitter interface; this function performs a mapping of
the interesting Twitter metadata to create new entity instances in the data model and populate
those instances with properties (including links to other instances). The most challenging
mapping involves the creation of location entities from tweets that are geo-located. When
latitude and longitude coordinates are specified in the location field of a tweet’s data structure, it
is not desirable to create a unique location entity for each set of coordinates. Instead, the RDS

 15

maps each coordinate pair to a city name by using a Twitter API method called reverse geocode.
When different sets of coordinates are mapped to the same city name, entity resolution is
accomplished for locations.

The reverse geocode service is very useful, but it is only supported for coordinates in the United
States. Different granularities are available (neighborhood, city, and state), but the RDS requests
city granularity. Results are returned as JSON data structures with locations (e.g., cities)
represented as bounding polygons (currently these are equivalent to rectangles but are generalized
to allow for more detailed representations). However, the Web service call latency, on the order of
15–20 s per call, can be prohibitive. It was observed that a collection of 500 or more tweets could
take over 1/2 h to process (depending on how many messages were geocoded).

To optimize the reverse geocode mappings, a quad-tree caching scheme was implemented in the
RDS Twitter Client. Quad trees are data structures that represent two-dimensional (2-D) space
as divided into equal-sized quadrants that, in turn, are subdivided as necessary in nested (or
recursive) fashion until 2-D coordinates or shapes can be stored for fast retrieval (see figure 11).
Whenever a reverse geocode lookup is needed, the quad-tree cache is checked first to see if the
specified latitude/longitude coordinates are contained in any of the stored rectangles. If a hit is
found, the name of the city is retrieved from the quad-tree cache, and no web service call is
required. If it is not found, the reverse geocode web service is used, and the result is added to the
cache. After all tweets are translated, the quad-tree cache is saved in the user’s RDS-specific
application folder. It is serialized in JSON format and written to a file that will be reloaded the
next time it is needed. When using this caching implementation, the process of saving a Twitter
dataset will typically take a couple minutes, even when starting from an empty cache. A geo-
located search will typically be specified with a radius of 50 miles or so, which may only include
one or two major cities and a few lesser municipalities. If at some point it is desired to optimize
quad-tree usage, a centralized cache could be specified to be shared among users.

Figure 11. Illustration of quad-tree storage of rectangles.

 16

In addition to populating the data model, all Twitter messages are archived using a NetKernel*
module. Each message is saved in its entirety (with all metadata) as an individual XML file that
contains the embedded JSON data structure (see figure 12).

Figure 12. Archived Twitter message.

The NetKernel module maps the file location to a Uniform Resource Identifier (URI),† which is
associated with the message entity via the messageURI property. When a Twitter message is
displayed in the RDS Investigator, the user can click on this URI and another NetKernel module
will retrieve the text of the message that is then displayed (see figure 13). The message will
contain a hyperlink to the author’s Twitter page, as well as to any other Twitter users or articles
that are referenced in the message. The Twitter message archive can be searched by using the
RDS Twitter Client’s archive tab. Any message matching the search term will be displayed
similarly to the search results previously shown in figure 9.

*Developed by 1060 Research (http://www.1060research.com/netkernel); “NetKernel is a software platform that implements

the Resource Oriented Computing (ROC) abstraction.”
†For more information, see <http://en.wikipedia.org/wiki/Uniform_Resouce_Identifier>.

<?xml version="1.0" ?>
<twitter-message>
 <![CDATA[
 {
 "location":"Takoma Park, MD",
 "profile_image_url":"http://a1.twimg.com/.../foo.jpg",
 "created_at":"Tue, 16 Feb 2010 03:57:28 +0000",
 "from_user":"GoodTwitty",
 "to_user_id":null,
 "text":"RT @owillis: Mullah Abdul Ghani Baradar: Top Taliban Military
 Commander Captured http://bit.ly/9u6Ekk #p2 #tcot #obama",
 "id":9169738444,
 "from_user_id":33803270,
 "geo":null,
 "iso_language_code":"es",
 "source":"<a href="http://bit.ly"rel="
 nofollow">bit.ly"
 }
]]>
</twitter-message>

 17

Figure 13. RDS investigator showing Twitter dataset.

2.3.3 Dual-Use Potential

Although Twitter data were originally sought for developmental purposes, the RDS capability to
very quickly conduct graphic analysis on Twitter datasets has sparked interest from a pure,
social-network-analysis perspective. Clearly, the RDS could be used for other purposes besides
enhancing situation awareness in asymmetric warfare. As of 15 September 2010, Twitter is
growing by 370,000 new users per day and has 160 million users.3 Events of national or
international significance, such as natural disasters, economic and technology news, as well as
politics, sports, and entertainment can trigger a torrent of tweets. This information could be of
use to various organizations tasked with services ranging from emergency response to peace
keeping in crowded venues to gauging acceptance of new technology.

2.3.4 Scalability

The RDS uses betweenness, a popular network centrality metric for determining an individual’s
importance in a given social network. A prerequisite calculation for determining betweenness is
to calculate all shortest paths from each node in a network to every other node. Currently, the
RDS uses unweighted links, so the path length of a route from a node A to a node B is simply a
count of the number of hops from node A to node B. The route finder of the RDS was originally

3Wilhelm, A. The Next Web. Live from the Twitter HQ. http://thenextweb.com/socialmedia/2010/09/14/live-from-twitter
-hq/ (accessed 3 November 2010).

http://thenextweb.com/socialmedia/2010/09/14/live-from-twitter

 18

written as a recursive algorithm using the classic divide and conquer* design paradigm. This was
very efficient for small graphs of up to a few hundred nodes. However, recursive algorithms
make heavy use of the stack, which becomes a significant drain on resources during the
calculation, possibly starving the garbage-collected, heap-based memory† of the Java virtual
machine (JVM) of the necessary storage for the result.

The RDS first calculates an adjacency matrix (A), which is an N-by-N matrix of Boolean values,
where N is the number of nodes in the graph. Each value in the matrix (Auv) is initialized to false
and will be set to true during the adjacency matrix calculation if the corresponding source node
(Nu) is directly linked to the corresponding target node (Nv). All RDS route finder
implementations use this matrix as an optimization in determining connectivity between nodes.
Additionally, the RDS stores the product of the route finder as an N-by-N matrix of route vectors
(RV), where N is the number of nodes in a graph. Each route vector (RVuv) is a collection of
shortest routes from the source node (Nu) to the target node (Nv). These matrices can require
significant space for large graphs (over 1000 nodes), especially the RV matrix, since each route
vector can contain many routes. After the route finder completes, a connectivity matrix (C) is
calculated that is similar to the adjacency matrix, but a cell is true if there is either a direct or
indirect path between the associated nodes. This connectivity matrix is used to speed up graph
layout (arrangement of nodes on the display). Therefore, due primarily to these three matrices,
space is at a premium.

Another problem with recursive algorithms is that they tend to limit themselves to a single thread
of execution. The RDS recursive route finder calculated a route from a source node to a target
node by first looking at all nodes adjacent to the source node. If any of these neighbor nodes are
the target node, a solution is found. Otherwise, the algorithm is called recursively on each of
these neighbor nodes (each neighbor becoming the source node in the recursion). Since the
process of recursively searching for the target node calculates routes between other nodes as a
side effect, these sub-routes can be used to fill in the result matrix. The coherency of the graph is
exploited, but the algorithm cannot easily be rolled out as a loop (where each iteration is
independent) and is therefore a poor candidate for parallel processing.

Subsequently, the route finder was rewritten to be an iterative solution based upon Dijkstra’s
algorithm.‡ It was hoped that this algorithm would serve for unweighted edges (by assuming a
weight of unity), and later when the RDS supports weighted edges, it would continue to serve
well. During testing with the Ali Baba dataset, however, on a graph on the order of 1000 nodes
with high adjacency (a high edge-to-node ratio), the route finder became bogged down. The
code was then instrumented to show the queue sizes as they changed during the route finder

*For more information, see <http://en.wikipedia.org/wiki/Divide_and_conquer_algorithm>.
†For more information, see <http://en.wikipedia.org/wiki/Dynamic_memory_allocation>.
‡Dijkstra’s algorithm is highly regarded for solving the single-source, shortest path problem for graphs with non-negatively

weighted edges (http://en.wikipedia.org/wiki/Dijkstra’s_algorithm).

 19

execution, and it was apparent that in unweighted graphs with lots of connections, Dijkstra's tree
pruning is not effective (many alternate nodes with the identical path cost), so queues become
very large. This not only increases the number of iterations necessary in the search, but memory
usage could be prohibitive.

Because of this, a breadth-first search algorithm was implemented4 in RDS to use for computing
routes where edges are not weighted. This has been the most efficient algorithm to date. The
time required to render a graph of the entire Ali Baba dataset (over 1300 nodes) has been
reduced from on the order of 30 min to >1 min.

Now that algorithm speed is scaling well, memory limitations have become the issue. When the
route finder, which is running in a Java applet, computes a result matrix for a large graph with
high adjacency, the storage exceeds the limits imposed by the Java plugin on 32-bit Windows
operating systems. The largest size allowed for the memory heap in the Java browser plugin (the
JVM used to run applets) is 1/4 of system memory. However, 32-bit Windows can only address
around 4 gigabytes of system memory, which results in the Java plugin setting the maximum
heap size to 1 gigabyte. To mitigate this, the Java objects used to store routes in the route finder
were augmented to undergo a self-packing process so that storage is minimized. This increased
the size of the graph that can be processed but not by a comfortable margin. Perhaps the easiest
fix would be to upgrade machines to use 64-bit Windows (64-bit Java is also required), and this
is planned for early FY11. This will allow the maximum heap size in the Java plugin to be
increased to 1/4 of the physical memory in the machine. A longer-term solution will most likely
be to move the route finder to a back-end computing cluster with parallel processing capability
so that limits will not be dictated by the computation power and available memory on the user’s
desktop.

3. Conclusion

This report has detailed work performed under A2SF. The scope of the effort expanded from the
original goals of the program, and the modifications to the ARL RDS will provide the means to
address the additional goals of cloud computing and threaded execution.

The use of the Twitter API alleviated the need for an external extraction capability to populate
the RDS knowledgebase, a fundamental limitation with the RDS. With this limitation removed,
the RDS can now be developed and tested with a variety of data content. The new API provides
the RDS with data of unlimited sizes, providing more realistic-sized graphs for stress testing
performance issues.

4Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; Stein, C. Introduction to Algorithms; 2nd ed.; MIT Press: Cambridge, MA,

2001; p 531.

 20

The Ozone Widget interface moves the RDS from the DAF to the FEF and Global Graph
architecture, which is the future architecture for DCGS-A. The capability to process larger
datasets provides better realism from the limited datasets developed under STEF. Use case and
proof-of-principle testing shows promise that the RDS can be used successfully to track
individuals and events through the knowledgebase to discover unknown relationships. ARL also
has a number of datasets. These datasets have differing characteristics and provide the basis for
various purposes, such as software development, stress testing, and algorithm validation. Future
work includes extending the library of fusion algorithms, continued acquisition and evaluation of
databases, focused research in ontologies for rigorous social network analysis metric
computation from semantic data, and Global Graph implementation and experimentation.

NO. OF
COPIES ORGANIZATION

 21

 1 DEFENSE TECHNICAL
 (PDF INFORMATION CTR
 only) DTIC OCA
 8725 JOHN J KINGMAN RD
 STE 0944
 FORT BELVOIR VA 22060-6218

 1 DIRECTOR
 US ARMY RESEARCH LAB
 IMNE ALC HRR
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 1 DIRECTOR
 US ARMY RESEARCH LAB
 RDRL CIM L
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 1 DIRECTOR
 US ARMY RESEARCH LAB
 RDRL CIM P
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 1 DIRECTOR
 US ARMY RESEARCH LAB
 RDRL D
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

ABERDEEN PROVING GROUND

 1 DIR USARL
 RDRL CIM G (BLDG 4600)

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 22

 1 DIRECTOR
 US ARMY RESEARCH LAB
 RDRL CII
 B BROOME
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 2 DIRECTOR
 US ARMY RESEARCH LAB
 RDRL CII A
 L TOKARCIK
 R WINKLER
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 2 DIRECTOR
 US ARMY RESEARCH LAB
 RDRL CII B
 M HOLLAND
 R HOBBS
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 1 DIRECTOR
 US ARMY RESEARCH LAB
 RDRL CII D
 S YOUNG
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 1 MITRE
 RDRL CII D
 D WALSH
 4812 EXECUTIVE DR
 GAINESVILLE VA 20155

ABERDEEN PROVING GROUND

 2 US ARMY CERDEC
 I2WD
 RDER IWP
 D PORTER SR
 6003 COMBAT DR
 ABERDEEN MD 21005

 28 DIR USARL
 (27 HC RDRL CII C
 1 CD) M THOMAS
 B BODT
 E BOWMAN
 F BRUNDICK
 J DUMER
 T HANRATTY
 C HANSEN

 E HEILMAN
 M MITTRICK (15 CPS, 1 CD)
 G MOSS
 A NEIDERER
 J RICHARDSON
 H ROY

	Contents
	List of Figures
	List of Tables
	1. Introduction
	2. Relationship Discovery Service
	2.1 Technical Evolution
	2.1.1 DCGS-A Application Framework to Fusion Exploitation Framework
	2.1.2 Automated Data Input
	2.1.3 Small to Large Datasets

	2.2 Cloud Computing
	2.2.1 Ozone Widget Framework

	2.3 Metadata Tagging of Unstructured Data
	2.3.1 Rationale
	2.3.2 Implementation Details
	2.3.3 Dual-Use Potential
	2.3.4 Scalability

	3. Conclusion

